CALCULATING THE EFFECT OF INTERACTION BETWEEN
TWO PARALLEL WHIRLING JETS
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and T. B. Balagula

The results of an experimental study of the interaction between two parallel whirling jets
are presented, The superposition principle is established for the tangential-velocity field
of twoparallel vortices.

The development of new methods for regulating furnace processes so that the boiler aggregate will
perform as required within a wide range of load levels and during the simultaneous—separate combustion
of different fuels has led to the formation of a procedure for controlling the fuel-gas dynamics on the basis
of the interaction between twin vortices [1].

The effect of this interaction has been studied on a furnace model 1200 X 1300 X 2700 mm in size
with two reversible burners d = 100 and d = 150 mm in diameter. The burner system was designed with
provision for the two jets to whirl either in the same or in opposite directions. The amount of twist and
the direction of whirling could be varied by changing the position of a eylindrical slide valve in each bur-
ner. The design parameter n defining the twist according to the method in [2] was varied within the range
0.73-2.23. This parameter had been defined in terms of the spreader system geometry:

& (1)

n= cos o,

where d denotes the diameter of the cylindrical channel, L the active length of the spreader (along the
burner axis), m the mumber of vanes, € the shortest distance between vanes, and ¢ the angle between a
vane and the tangent to the spreader hub passing through the tip of that vane,

The velocities of the whirling jets were measured with a cylindrical probe in a plane through the
burner axes, at distances from the nozzle x/d = 0 to 6. As a result, it was possible to establish the opti-
mal center-to-center distances between the burners for producing an interaction field between the two
parallel vortices and to evaluate the effect of the jet twist on this interaction.

The essence of the investigated phenomenon is as follows.

In a system which contains two parallel turbulently whirling furnace jets, already at a definite dis-
tance apart depending on their twists and initial momenta, in the region separating them there appears
in the plane through their axes a resultant field of tangential velocities equal to the algebraic sumoftheres-
pective tangential velocities of the two individual vortices, The character of this resultant tangential-
velocity field depends on the sense of rotation of the interacting jets.

When the jets are whirling in opposite directions, then the resultant tangential velocity is equal to
twice the tangential velocity of either jet (if both jets are of the same dimensions and intensities) at half
the distance R between the two jet axes. When the jets are whirling in the same direction, then the re-
sultant tangential velocity is zero at this distance and has opposite signs on both sides of the point R/2,
these signs depending on the direction of whirling.
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Fig.1. Experimentally' determined distribution of tangential vel~
ocities in the region between the two jet axes: 1) x/d = 1.5; 2)
2.5; 3) 3.5,

The results of experimental studies concerning the interaction between twin vortices are shown in
Fig.1, The curves of the distribution of the resultant tangential velocities plotted for distances of a few
nozzle diameters confirm these conclusions.

The field of interaction of the vortices may, to the first approximation, be described on the basis
of an analysis of two ideal vortices.

As is well known, the tangential-velocity distribution in the field of a vortex (inside regions of radii
R, and Ry) and outside it is as shown in Fig.2. The superposition principle applies in the plane passing
through the axes of both ideal vortices and, as a corollary, the tangential velocities add algebraically:

R o R; _ (2)
-

U(p::(ol + 21*2:.

The resultant tangential-velocity field obtained by combining ideal vortices in accordance with Eg.
(2) cannot quite adequately explain the interaction between real vortices propagating in a viscous medium,
since their interaction is accompanied not only by turbulent diffusion in the perpendicular plane but also by
convective as well as diffusive displacement in the direction of the jet flow.

Calculating the interaction between two vortices is a complicated mathematical problem a solution to
which can, in principle, be arrived at on the basis of boundary-layer equations. It is to be noted, however,
that, since boundary-layer equations are nonlinear, they do not directly yield a superposition of velocity
fields of interacting vortices.

Of all the known semiempirical methods of solving jet problems, the method most applicable for this
particular case is that used for solving the equivalent problem in heat-conduction theory [3]. The gist of
this method is that, instead of solving nonlinear boundary-layer equations for the velocity and pressure
components, the linear equation of transient heat conduction

0B _ OB 1 oB (3)

7)3 an? 1 an

is solved in a fictitious (£, 71)-space for the variable B which is a definite function of velocity and pres-
sure components.

>

It has been shown in [3] that, for a large class of self-simulating and certain nonself-simulating
flows, mapping from the (£, n)~space into the real (x, y)-space is effected as follows:

E=8(), n=y (4

The function £(x) is determined by comparing the solution to Eq.(3) with the experimental data at a
fixed value of y (e.g., at y = 0).

The method of the equivalent heat-conduction problem has been used successfully in calculating the
aerodynamics of straight jets with the flow density pU? as the variable B [3].

The calculation of whirling jets is more complicated. Without dwelling now on the axial velocities
in a whirling jet [4, 5], we will consider in more detail the tangential velocities. It was originally sug-
gested in [5] that the tangential velocity Uy, be determined from Eq.(3) with B = pU[‘fa. As has been shown
subsequently in [4], however, it is not legitimate to use Eq.(3) in calculating pU?zp because of the incom-

patibility between Eq.(3) and the boundary condition pU%DIyzo = 0 which the variable pU%p must satisfy. It
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A,

Fig.2. Distribution of the velocity Uy in the field of an ideal vortex
and outside it.

has been shown in [4] that the diffusion equation (3) is satisfied not by pU%D but by the vortex vector com-
ponent Zx’ which is defined as

1 o@le (5)

Z,=
y dy

The tangential velocity Uy is then determined from the diffusion equation for the vortex vector Zy. The
procedure for calculating Uy according to [4] is based on the following.

It has been proved rigorously in [6], based on the hydrodynamics of a viscous laminar flow, that
vortex Z = curlU satisfies the equation of transient heat conduction
9Z _ Az (6)
ot
The vector equation (6) is equivalent to three scalar equations for the vortex components Z., Zy,
Zy. A conversion from Eq.(6) for the Zy vortex component to the equivalent heat-conduction problem
will, in the axially symmetrical case, yield
0z, %7, 1 0z
e S (0
08z dy y dy
The initial condition for Eq.(7) is given as Zolgz =¢ = Zy(y) and the boundary condition is defined as Z
— 0 at infinity., The solution to Eq.(7) is known (3] and can be written as

y2 ©
&P (” i) [ 2
ZE, Y = ————2—§;——BZ—) JZO(r) exp (— ~%§—Z——) 10( 2?: )rdr. (8)

0

Here I is the first-order Bessel function, r is the variable radius in the plane £ = 0. From the rela-
tion between Zx and Uy according to (5) we find the tangential velocity:

¥
Uy = — | Zydy. (9)
Y

4]

The solution for Uq; is then

Y
1 2 2
Uy = _—QEZ.’/ S exp (—— —*4y§2 ) Yy [SZO (r) exp (— —————422 )'10 (_Qrgyz )rdr ] dy. (10
g

0
The procedure for caleulating Uy according to Eq.(10) has been shown in [4] and is as follows.

The initial Zy{r) profile at the nozzle throat is approximated by a piecewise discrete function. Here
Zy(r) is found according to Eq, (5):

L00Ug) _ Uy |, Uy (11)

or r or

Z0)= —
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Fig.3. Rotational-velocity field in a single whirling jet: a) n = 0.32; b) 0.51; c) 0.74;
1) test data; 2) theoretical data.

Fig.4. Function VE(x) for a twisted jet: n = 0.73 (1), 1.09 (2), and 2.23 (3).

the derivative 9Ugp for being replaced by the ratio of increments. The expression for Zy can then be re-
duced to the sum of so~called P-functions:

., 1 . i
_ (2 ol N\ (9 12
PE ) % exp ( " ) JeXp( 45)1(,(2§ )rdr, (12)

which have been tabulated in [3]. After Zyx is determined, velocity Ugp will be found by a numerical in-
tegration of (9).

Calculations and test results for a single jet with various twists are compared in Fig.3. The cal-
culated results are seen here to agree closely with the test data, despite the presence of a backstream
region.

According to the equivalent-problem method, a theoretical calculation of tangential-velocity pro-
files requires a transformation of coordinates from &, 1 to x, y. Here the £(x) relation was found by com-
paring theoretical and experimental values along the jet axis. The VE(x) curve is shown in Fig.4. One can
see that, as the twist n is increased, £(x) increases too, and this indicates a stronger turbulization of the
jet at larger twist values. The magnitude of Y{(x) increases also with the distance from the nozzle throat.

The suggested procedure for calculating Uy has been checked out also on a set of two concentric
jets with the inner air jet whirling and surroundedby athingas jet. The calculated results agreed closely with
test data. Thus, this method of determining U in whirling jets has been proved applicable to the entire
gamut of twisted jets found in practice.

The use of Eq.(3) for vortex Z, results in a linear relation between Zy and Uy according to Eq. (5)
and, consequently, the tangential velocity Upaswell as Zx satisfies the linear differential equation. It
follows, then, that the superposition principle should apply to Uy fields producedby several sources, since
the equation which describes the vortex magnitude is linear. As is well known, such equations can be
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solved by the method of sources. This leads to the immediate conclusion that the resulting field due to
interaction between two jets can be found by adding the fields produced by each jet alone. Therefore, a
calculation of the resultant tangential-velocity field can be reduced to an algebraic addition of the tangen-
tial velocities in the individual interacting jets, as determined by the method in [4].

An application of the method of the equivalent heat-conduction problem does not automatically imply
that all quantities describing a jet are subject to the superposition principle. In the case of straight jets,
for example, not the axial velocities but the flow densities pU? are additive algebraically. By the same
token, if Eq.(3) were applied to pU%, as suggested in [5], the tangential velocities could not become ad-
ditive algebraically.

In order to calculate the observed effect of interaction between two parallel vortices, the equation of
heat conduction must be applied directly to the quantity Uy or to any other quantity linearly related to it.
This proves that the method proposed in [4] for calculating Uy on the basis of vortex diffusion is sufficient-
ly accurate for the description of the tangential-velocity fields in complex jet streams.

NOTATION
U, Up are velocity components (axial and tangential), m/ sec;
w is the angular velocity, sec™;
R is the center~to-center distance between vortices, m;
B is the transferred substance;
P is the density, kg /cm?;
14 isthekinematic viscosity;
t is the time;
v is the Laplace operator;
£, are fictitious coordinates (longitudinal and transverse);
n is the design parameter characterizing the twist, equal to the ratio of the momentum at the burner

entrance to the momentum at the burner throat.
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